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LONG-TERM GOAL

My long term goal is to study distributed control strategies for multiple autonomous systems engaged
in mine reconnaissance in the very shallow and surf zone environment.  This effort is conducted in
collaboration with Chris Duarte (NUWC), J. Marc Eadie and C. Bernstein (NSWC-CSS).

OBJECTIVES

We intend to develop a Control Strategy for autonomous systems performing search/survey in mine
reconnaissance operations.  We focus on the Pre-survey Operation, which provides a sampling of
candidate assault lanes, and on the Detailed Mapping Operation, which focuses on the selected assault
lane and acquiring a “detailed” map of target locations and possibly target types.

APPROACH

We apply biological information to design Cognitive Maps and Action Systems, used to guide
exploration and navigation by autonomous systems in a mine reconnaissance mission in the very
shallow and surf-zone environment.  These Cognitive Maps are accurately defined and implemented
by recurrent, heteroassociative neural networks (see Figure 1).  Associations between representation of
places in the network represent links between those places in the environment.  Associations in the
maps are modified by experience.  For instance, when movement is possible between two places in the
environment, then the association between them is strengthened.  Increments in the spatial knowledge
acquired by the autonomous agents are strongly dependent on the exploration strategy adopted.

The architecture and function of the system controlling exploration and mapping are comparable to the
structure and function of areas of the mammalian brain involved in spatial navigation:

• The architecture and function of the neural network implementing the Cognitive Map (Figure
1) are comparable to the structure and function of the areas CA1 and CA3 in the hippocampus
proper.  The cytoarchitectural fields CA1-3 are unidirectionally connected from CA3 to CA1.
The CA3 field projects feedback connections to itself forming a recurrent, heteroassociative
network.  The entorhinal cortex which projects to Dentate Gyrus and directly to CA3 is
commonly viewed as a high level sensory information module.  Whereas, the entorhinal cortex
represents the most important route of entry for neocortical afferents to gain access to the
hippocampus, the subiculum is the main output.
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Figure 1.  A Neural Network for Cognitive Mapping

We assume that the CA3 stores the connections between places.

• The neural network implementing the Action System, including the working memory of the
path, is comparable to the prefrontal cortex, which is involved in planning and executive
control.  The prefrontal area has reciprocal connections with many subcortical and cortical
regions, among them with the hippocampus and the parietal cortex.  In terms of spatial
cognition, we conceive the prefrontal cortex as an executive system with a short-term buffer
maintaining the availability of spatial information necessary to plan a trajectory. ]

• The neural network implementing spatial localization is comparable to brain areas such as the
entorhinal cortex.  It has been suggested that landmarks in the environment are identifiable and
the distances between them and the animal are encoded in the firing rate of neurons in the
entorhinal cortex.  For example, when the animal is close to a certain landmark, the
corresponding neuron fires at its highest rate.  In contrast when the animal is far enough from a
landmark the corresponding neuron is silent.  Assuming that the animal is able to perceive at
least three landmarks in any region of the environment, then the resulting firing patterns in CA3
(place fields) resemble those in animals and offer a solution for partitioning the environment.

• The neural network implementing dead reckoning is functionally comparable to brain regions
such as the hippocampus, the subiculum, and thalamus, which participate in path integration
and contain directional cells.  There is substantial evidence for path integration in animals,
primarily in the use of homing behaviors.  We assume that the thalamus makes predictions of
the current position and the subiculum computes the difference between the position given by
the thalamus and the position given by CA3.  Whenever there is a mismatch, the dead-
reckoning coordinates are updated.  In contrast, when the sensory information is missing, there
is no spatial position coming from CA3 and the animal is using only the position given by the
dead-reckoning system.  The coordinates of the dead-reckoning system are computed using the
egocentric information received from the parietal cortex.



WORK COMPLETED

During this period we have completed the following projects:

• Mapping of the three-dimensional topography of the ocean floor.

• Improved efficiency in navigation.

• Subdivision of a large constrained field to achieve more efficient exploration.

• Multiple-agent exploration.

• Simulation of a testing field.

• Computer implementation of the exploration algorithm.

RESULTS

Mapping of the Three-Dimensional Topography of the Ocean Floor.  A 3-D unexplored environment
is represented in the Cognitive Map as a set of linked, unvisited places.  Different types of terrain, as
well as barriers and obstacles, are also represented in the Cognitive Map.  During exploration, these
unvisited places constitute the goals the Action System should reach.  The system efficiently and
completely explores the environment.  Once the environment is mapped, the Action System can plan
the best route to navigate between places.

• Map Building.  At the beginning of the exploration of the unknown environment, all adjacent
places are linked in the Cognitive Map, i.e., all Vi,j = Vj,i = 1.  In addition, each unvisited Place
i that the system is required to explore is designated as a goal for the system and Vi,GOAL = 1.
As the agent explores a novel environment, connections Vi,j are modified in order to reflect the
structure of the field.  When Place j, adjacent to Place i currently occupied by the system,
cannot be accessed − due to the presence of barriers or obstacles − then Vi,j = V j,i  = 0, and
Placej remains unvisited, Vj,GOAL = 1.  When Placej, adjacent to Placei currently occupied by the
system, can be accessed then Vi,j = V j,i = 1 are not changed, and Placej changes its status to
visited, Vj,GOAL = 0.

• Topography.  As the agent explores the novel environment, connections Vi,j in the network are
modified in order to reflect its three-dimensional structure.  Connections Vi,j  decrease
proportionally to the absolute difference between the heights of Place j and Place i, that is Vi,j  =
V j,i  = (1 -  | Hi - Hj| ), where Hi is the height of place i and  Hj the height of place j.  Because Hi
and Hj can be measured from any reference point, they can be either positive or negative.  If the
connectivity between i and j is smaller than a certain value, then it is assumed that the agent
cannot move between places and Vi,j  = Vj,i  = 0.  If place j can be accessed , it changes its status
to visited, Vj,GOAL = 0, otherwise it remains unvisited and a goal for the system, Vj,GOAL = 1.

• Type of Terrain.  Besides the topography of the environment, the map can also represent the
nature of the terrain.  Connections  decrease proportionally to the difficulty in moving between
Place j and Place i, that is Vi,j  = V j,i  = (1 - δ ), where δ represents the impediments of the
terrain, e.g., exposed rocks, sediments.  Now connections between Place j and Place i are given
by Vi,j  = V j,i  = (1 - δ - | Hi - Hj|).  As before, if connectivity between i and j is smaller than a
certain value, then it is assumed that the agent cannot move between places and Vi,j  = V j,i  = 0



• Barriers and Obstacles.  In addition to the natural topography of the environment, artificial
barriers and obstacles can also be represented on the canvas.  Whereas, barriers completely stop
progress from one place to another (represented by Vi,j = 0), an obstacle, like a difficult terrain,
is something that can slow the progress from one place to another (represented by Vi,j < 1).

• Navigation.  The resulting Cognitive Map incorporates three properties:  connectivity, distance,
and direction.  The map can be used to guide navigation at different ocean depths.

Improved Efficiency in Navigation Exploration, Navigation with a Cognitive Map.  Once a Cognitive
Map representing the environment is built, the Action System can plan the best route to navigate
between places.  Before making a decision, the Action System briefly examines all the alternative next
places linked to the place where the agent is located.  The output of prediction of the goal for each
place h is stored into a working memory, as the alternative next places are examined.  The Action
System decides which of the alternative next places is the best predictor of the goal by comparing all
the alternative predictions provided by the Cognitive System.  The agent moves to this best predictor.

The total decision time is proportional to (a) the total length of the path to the Goal multiplied by (b)
the number of neighboring places for each place in the path multiplied by (c) the length of the path
from each neighboring place to the Goal.  The problem with this approach is that the procedure has to
be repeated at every place in the path to the Goal.  We have analyzed two alternative procedures that
reduce the total decision time.

1. When the task of the agent is to move to a known Goal, the procedure is as follows.  With the agent
still at the start place, the Goal is activated and the activations of all intermediate places are stored
in a short-term memory.  The agent now moves towards the Goal guided by a gradient ascent rule,
choosing the neighboring place with the largest activation.

2. When the task of the agent is to navigate to an unknown Goal, the procedure is as follows.  In that
case, the agent has to decide which of several places is the closest one, define that place as the
Goal, and subsequently approach it.  In these cases the procedure is as  follows.  As in the original
model, with the agent still in the initial place, all neighboring places are activated until one of the
possible Goals, the closest one, is activated.  Activations of all places are stored in short-term
memory.  Now the Goal is defined and, once the short-term memories are reset to zero, we can
apply the procedure described in the preceding section.

Subdivision of a Large Constrained Field to Achieve More Efficient Exploration.  We assume that the
size of the environment to be explored is known a priori.  Because we want to explore exhaustively an
environment, every region in the real environment must have a correspondent in the internal map.
When the size of the environment to be explored is too large this determines a high computational load
on the agent.  An approach that eludes the fore-mentioned problem is to partition the environment in
smaller regions.  So far, the partitions are of quadrangular form of equal size.  This type of division
does not take into account any obstacles in the environment.

Because the length of the simulation is a quadratic function of the number of places being visited, an
important advantage of this approach is that exploring smaller portions substantially reduces the
decision time.  For example, if we assume that N is the total number of places and n is the number of
partitions of the environment and there are only two levels in the structure then instead of taking into



account N2 connections the agent takes into account only (N/n)2 connections when searching for an
unvisited place in a certain partition.  By the same token, the agent takes into account only n2

connections when planning at the partition level of the hierarchical structure.

Multiple-Agent Exploration.  In this approach instead of using only one agent, a number of agents
equal to the number of partitions in the environment were employed to search the environment.  Each
agent was assigned only one partition.  Although the agents worked independently they update a global
Cognitive Map.  Because the agents work in parallel (there is no interference between them) the total
exploration time might be even smaller than the exploration time of a single agent divided by the
number of  agents.

Simulation of a Testing Field.  Using a demonstration field provided by C. Bernstein (CSS, Panama
City), we ran simulations adjusting search to minimize turns, which help (a) to reduce the energy
consumption, and (b) reduce error build-up for dead-reckoning navigation.  We have also introduced
several behaviors triggered by different stimuli that help the agent to cover the environment in a single
sweep with no returns to unvisited leftover areas. These strategies significantly improve performance
of the agent (12,440 steps, 12,440 turns) compared with random search (204,811 steps, 179,827 turns),
reducing the number of steps to only a 6.1 percent, and the number of turns to a 6.9 percent, of that of
the random case.

Computer Implementation of the Exploration Algorithm.  The exploration algorithm has been
implemented as a C++ module. It can be integrated in any C++ project.  The main function of the
module returns the new heading or location for the robot and accepts as parameters the current
location, direction and sensors readings.  The number of sensors can be changed in the program.  The
module has been tested at Duke and NUWC.

IMPACT/APPLICATION

We have improved the system abilities to perform mine reconnaissance, including:

• Mapping of the three-dimensional topography of the ocean floor.

• Improved efficiency in navigation

• Subdivision of a large constrained field to achieve more efficient exploration.

• Multiple-agent exploration.

• Simulation of a testing field.

• Computer implementation of the exploration algorithm.

TRANSITIONS

For a second time, Dr. Schmajuk visited the NSWC-CSS facility in Panama City, FL (POC: C.
Bernstein) and exchanged information about the NUWC range topography, and some of the dynamic
capabilities of crawling vehicles.  Using the plan of a testing field provided by C. Bernstein, computer
simulations incorporate this information.  The results (see Simulation of a Testing Field above) were
communicated to C. Bernstein for application in a field test.



RELATED PROJECTS

This project is carried out in collaboration with the following projetcs:  Group Behavior Analysis [Ms.
Duarte, Dr. Schmajuk], the Basis Behavior Methodology [Dr. Mataric], and REMUS Vehicle Testing
[NUWC, WHOI].


